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DISCONTINUITY ZONES

IN THE JUNCTION REGION OF TWO MINE TUNNELS

UDC 622.241.54N. V. Cherdantsev and S. V. Cherdantsev

The boundary integral equation method was used to solve the problem of the stress sate at the junction
of two mine tunnels. The regions of rock breaking are obtained using the Mohr strength criterion.
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An analysis of the stress–strain states of rock outcrops is necessary for designing and constructing mine
tunnels, and it becomes even more urgent if there is a junction of mine tunnels. At the junction of mine tunnels,
the rock are in a three-dimensional stress, which makes the problem more complicated than the problem of a single
extended mine tunnel.

Let us consider the stress sate around the junction of two horizontal mutually perpendicular mine tunnels
of square cross-section (Fig. 1). We formulate the problem of the stress sate around the mine tunnels as follows [1].
Along the x3 coordinate axis, an infinite elastic massif is subjected to stresses σ∞33 = γH, where γ is the volumetric
weight of the rocks of the massif and H is the depth of the massif. In the horizontal x1 and x2 directions, the massif
is acted upon by stresses σ∞11 = σ∞22 = λγH, where λ is the lateral pressure coefficient. Inside the massif there is
a cavity which models the given junction. The entire surface of the massif or its part are acted upon by forces F ,
which can be produced, for example, by the response of the support. It is required to find the stress sate at any
point of the massif around the junction.

This problem was solved using the boundary integral equation method, which consists of the following [2–4].
A compensating load of intensity a is applied to the surface of the cavity. The total stresses from the action of the
external and compensating loads at each point of the cavity should satisfy the conditions on the surface. The stresses
from the compensating load are determined by integration over the Kelvin solution within the cavity surface [3].
As a result, the surface conditions are described by the integral equation (see [3])
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where Φqm(Q0,M0) is Green’s tensor defined as (see [2–5])
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Here ν is Poisson’s constant, R is the distance between the points Q0 and M0, δqm is the Kronecker delta, σ∞qq is the
stress tensor at infinity, O is the surface area of the cavity, nq and nm are the unit outward normal vectors to the
cavity surface at the points Q0 and M0, respectively; the subscripts q, m, and t are the coordinate axis numbers,
which take values 1, 2, and 3.
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Fig. 1. Junction of two mine tunnels of square cross-section.
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Fig. 2. Discontinuity zone at the end section of the main mine tunnel (a), in the middle cross-section (b),
and in the section of the main mine tunnel at the junction with the lateral mine tunnel (c).

Equation (1) is solved numerically. The cavity surface is first replaced by a finite number of plane elements
(N) and the integral is replaced by the sum [6]. Then, integration over each element is performed under the
assumption that within an element, the intensities a and F are constant. As a result, the integral equation (1) is
replaced by the following N vector equations:
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Here i is the number of the point on the cavity surface at which the boundary conditions are formulated, j is the
current point number on the cavity surface; summation is performed over all points except for j = i. In Eqs. (2)
(and below), the subscripts of the tensors are separated by a point from the subscripts of the points of the cavity.

Solving Eqs. (2) for a∗q.j , one obtains the stress tensor σqm at any point i of the massif using the superposition
principle:

σqm.i = σqmt.ija
∗
t.j + σ∞qq.i.
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Here σqmt is the stress tensor due to unit load (the Kelvin tensor), defined as (see [2, 4, 5])
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1
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.

The broken regions or discontinuity zones around the mine tunnel are found as the set of points at which
the rock has broken by the Mohr strength criterion:

τν = σν tan ϕ + K, (3)

where K is the rock jointing factor. In the present study, it is assumed that the massif produces a hydrostatic stress
field (λ = 1) and has horizontal surfaces of weakness, in which the jointing coefficient is K = 0, and the angle of
internal friction is ϕ = 20◦.

The problem is solved using the MATHCAD mathematical software. The stresses are calculated in di-
mensionless form, i.e., are normalized by γH. The dimensions of the mine tunnels are also dimensionless. After
determination of the stresses and formulation of strength conditions for points at which the stresses were calculated,
discontinuity zones are constructed in some sections around the main mine tunnels, which are shown in Fig. 2 as
shaded regions.
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